ZORNIA GEMELLA (FABACEAE) NEW TO FLORIDA

RICHARD CARTER
Herbarium VSC
Biology Department
Valdosta State University
Valdosta, Georgia 31698-0015
rcarter@valdosta.edu

RANDY L. MEARS
6234 Savannah Breeze Court, Apt #202
Tampa, Florida 33625
randcyperus@bellsouth.net

ABSTRACT

Widely distributed in the New World, Zornia gemella ranges from South and Central America to the Caribbean. In the USA, it has previously been known only from southern Texas. We report the first known occurrence of this species from Florida.

While searching in Florida for additional localities of Cyperus richardii Steudel (cf. Carter et al. 2016), we encountered an unfamiliar Zornia with bifoliolate leaves, which we have identified as Zornia gemella Vogel. It is a species of tropical and warm temperate areas, ranging from South and Central America to the Caribbean and southern Texas (Mohlenbrock 1961, 1962). The only species of Zornia previously recorded for Florida is the southeastern endemic Z. bracteata J.F. Gmel. (Isley 1990; Wunderlin & Hansen 2011; Wunderlin et al. 2016) — we report and describe our voucher collections of Z. gemella, documenting the first known occurrence of this species from the state.

Zornia gemella Vogel, Linnaea 12: 61. 1838.

Perennial herb. Stems trailing to decumbent, glabrous. Leaves palmately compound; leaflets 2, broadly elliptic to ovate below to lanceolate or lance-linear above, ± pellucid punctate. Spikes flexuous, bracteate, flowers mostly widely spaced; floral bracts lanceolate to narrowly elliptic, 6.0–7.5 x 1.3–1.7 mm, attached basally or slightly above the base and subpellate, glabrous to ciliate and strigose. Corolla papilionaceous, basally included within the bracts but mostly exserted, yellow. Loments with (3–) 4–6 (–7) segments, oblong-linear, 8–15 x 1.8–2.0 mm, straight or curved, mostly exserted from bracts; segments ± square, 1.9–2.1 mm long, both hirtellous and with retrorsely barbed bristles. Figures 1 and 2.

USA. Florida. Hillsborough Co.: Alderman Ford Park, along E side of FL Hwy 39, 27.86974° N, 82.13712° W, infrequently mowed weedy border between athletic fields, disturbed sandy loam, occasional, 16 Dec 2015, Carter 22597 with Mears (FLAS, MO, TROY, USF, VDB, VSC). Additional populations are expected at other ruderal sites in central and southern peninsular Florida.
Figure 1. *Zornia gemella* (Carter 22597, VSC); inset shows portion of inflorescence with bracts and exserted loments.
Both *Zornia bracteata* and *Z. gemella* have mostly prostrate to trailing stems. However, the bifoliolate leaves of *Z. gemella* (4-foliolate in *Z. bracteata*) and its much narrower and less conspicuous lanceolate to narrowly elliptic floral bracts (ovate to elliptic in *Z. bracteata*) are immediately obvious differences. The key below distinguishes these two species.

1. Leaves with 2 leaflets; floral bracts lanceolate to narrowly elliptic, 1.3–1.7 mm wide; loment with retrorsely barbed bristles and hirtellous; loments with (3–) 4–6 (–7) segments; loment segments ± square, 1.9–2.1 mm long ... *Zornia gemella*

1. Leaves with 4 leaflets; floral bracts ovate to elliptic, 3.5–7.1 mm wide; loment with retrorsely barbed bristles but otherwise glabrous; loments with 2–4 segments; loment segments lunulate, 3.4–4.2 mm long ... *Zornia bracteata*

Figure 2. Loments of *Zornia gemella* (A–C) and *Z. bracteata* (D–E). A. Intact loment. B. Portion of loment showing three segments. C. Loment segment showing retrorsely barbed bristles and hirtellous pubescence. D. Portion of loment showing three segments. E. Loment segment showing retrorsely barbed bristles and absence of pubescence. All scale bars = 1 mm. A–C from *Carter 22597* (VSC); D–E from *Carter 17158* (VSC).

ACKNOWLEDGEMENTS

We gratefully acknowledge Robert Mohlenbrock and Michael Woods for reviewing the manuscript and the Valdosta State University Foundation for financial support of field work. The National Science Foundation provided infrastructural support of the Valdosta State University Herbarium (DBI 1458264, J.R. Carter, PI) and funded the acquisition of imaging equipment used to prepare photographs for this research (DBI 1054366, J.R. Carter, PI).

LITERATURE CITED